初三数学课教案6篇

时间:2024-09-09 09:27:54 投稿人:kaka003

本文是网站小编coco给大家分享关于初三数学课教案6篇的范文,文章可能有点长,但是希望大家可以阅读完,增长自己的知识,最重要的是希望对各位有所帮助,可以解决了您的问题,不要忘了收藏本站喔。

一份优秀的教案能够为教师提供清晰的教学框架,提高课堂教学的有效性,教师应定期写教案,以保持课堂的新鲜感和吸引力,以下是尚华范文网小编精心为您推荐的初三数学课教案6篇,供大家参考。

初三数学课教案6篇

初三数学课教案篇1

一、素质教育目标

(一)知识教学点

使学生初步了解正弦、余弦概念;能够较正确地用sina、cosa表示直角三角形中两边的比;熟记特殊角30°、45°、60°角的正、余弦值,并能根据这些值说出对应的锐角度数.

(二)能力训练点

逐步培养学生观察、比较、分析、概括的思维能力.

(三)德育渗透点

渗透教学内容中普遍存在的运动变化、相互联系、相互转化等观点.

二、教学重点、难点

1、教学重点:使学生了解正弦、余弦概念.

2、教学难点:用含有几个字母的符号组sina、cosa表示正弦、余弦;正弦、余弦概念.

三、教学步骤

(一)明确目标

1、引导学生回忆“直角三角形锐角固定时,它的对边与斜边的比值、邻边与斜边的比值也是固定的.”

2、明确目标:这节课我们将研究直角三角形一锐角的对边、邻边与斜边的比值——正弦和余弦.

(二)整体感知

只要知道三角形任一边长,其他两边就可知.

而上节课我们发现:只要直角三角形的锐角固定,它的对边与斜边、邻边与斜边的比值也固定.这样只要能求出这个比值,那么求直角三角形未知边的问题也就迎刃而解了.

通过与“30°角所对的直角边等于斜边的一半”相类比,学生自然产生想学习的欲望,产生浓厚的学习兴趣,同时对以下要研究的'内容有了大体印象.

(三)重点、难点的学习与目标完成过程

正弦、余弦的概念是全章知识的基础,对学生今后的学习与工作都十分重要,因此确定它为本课重点,同时正、余弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,因此概念也是难点.

在上节课研究的基础上,引入正、余弦,“把对边、邻边与斜边的比值称做正弦、余弦”.如图6-3:

请学生结合图形叙述正弦、余弦定义,以培养学生概括能力及语言表达能力.教师板书:在△abc中,∠c为直角,我们把锐角a的对边与斜边的比叫做∠a的正弦,记作sina,锐角a的邻边与斜边的比叫做∠a的余弦,记作cosa.

若把∠a的对边bc记作a,邻边ac记作b,斜边ab记作c,则

引导学生思考:当∠a为锐角时,sina、cosa的值会在什么范围内?得结论0<sina<1,0<cosa<1(∠a为锐角).这个问题对于较差学生来说有些难度,应给学生充分思考时间,同时这个问题也使学生将数与形结合起来.

教材例1的设置是为了巩固正弦概念,通过教师示范,使学生会求正弦,这里不妨增问“cosa、cosb”,经过反复强化,使全体学生都达到目标,更加突出重点.

例1求出图6-4所示的rt△abc中的sina、sinb和cosa、cosb的值.

学生练习1中1、2、3.

让每个学生画含30°、45°的直角三角形,分别求sin30°、sin45°、sin60°和cos30°、cos45°、cos60°.这一练习既用到以前的知识,又巩固正弦、余弦的概念,经过学习亲自动笔计算后,对特殊角三角函数值印象很深刻.

例2求下列各式的值:

为了使学生熟练掌握特殊角三角函数值,这里还应安排六个小题:

(1)sin45°+cos45;(2)sin30°cos60°;

在确定每个学生都牢记特殊角的三角函数值后,引导学生思考,“请大家观察特殊角的正弦和余弦值,猜测一下,sin20°大概在什么范围内,cos50°呢?”这样的引导不仅培养学生的观察力、注意力,而且培养学生勇于思考、大胆创新的精神.还可以进一步请成绩较好的同学用语言来叙述“锐角的正弦值随角度增大而增大,余弦值随角度增大而减小.”为查正余弦表作准备.

(四)总结、扩展

首先请学生作小结,教师适当补充,“主要研究了锐角的正弦、余弦概念,已知直角三角形的两边可求其锐角的正、余弦值.知道任意锐角a的正、余弦值都在0~1之间,即0<sina<1,0<cosa<1(∠a为锐角).

还发现rt△abc的两锐角∠a、∠b,sina=cosb,cosa=sinb.正弦值随角度增大而增大,余弦值随角度增大而减小.”

四、布置作业

教材习题14.1中a组3.

预习下一课内容.

五、板书设计

初三数学课教案篇2

了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用.

复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其他的运用.

重点

中心对称图形的有关概念及其它们的运用.

难点

区别关于中心对称的两个图形和中心对称图形.

一、复习引入

1.(老师口问)口答:关于中心对称的两个图形具有什么性质?

(老师口述):关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.

关于中心对称的两个图形是全等图形.

2.(学生活动)作图题.

(1)作出线段ao关于o点的对称图形,如图所示.

(2)作出三角形aob关于o点的对称图形,如图所示.

延长ao使oc=ao,延长bo使od=bo,连接cd,则△cod即为所求,如图所示.

二、探索新知

从另一个角度看,上面的(1)题就是将线段ab绕它的中点旋转180°,因为oa=ob,所以,就是线段ab绕它的中点旋转180°后与它本身重合.

上面的(2)题,连接ad,bc,则刚才的关于中心o对称的两个图形就成了平行四边形,如图所示.

∵ao=oc,bo=od,∠aob=∠cod

∴△aob≌△cod

∴ab=cd

也就是,abcd绕它的两条对角线交点o旋转180°后与它本身重合.

因此,像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.

(学生活动)例1从刚才讲的线段、平行四边形都是中心对称图形外,每一位同学举出三个图形,它们也是中心对称图形.

老师点评:老师边提问学生边解答的特点.

(学生活动)例2请说出中心对称图形具有什么特点?

老师点评:中心对称图形具有匀称美观、平稳的特点.

例3求证:如图,任何具有对称中心的四边形是平行四边形.

分析:中心对称图形的对称中心是对应点连线的交点,也是对应点间的线段中点,因此,直接可得到对角线互相平分.

证明:如图,o是四边形abcd的对称中心,根据中心对称性质,线段ac,bd点o,且ao=co,bo=do,即四边形abcd的对角线互相平分,因此,四边形abcd是平行四边形.

三、课堂小结(学生归纳,老师点评)

本节课应掌握:

1.中心对称图形的有关概念;

2.应用中心对称图形解决有关问题.

四、作业布置

教材第70页习题8,9,10.

初三数学课教案篇3

(一)知识教学点

1.使学生初步了解统计知识是应用广泛的数学内容 .

2.了解平均数的意义,会计算一组数据的平均数 .

3.当一组数据的数值较大时,会用简算公式计算一组数据的平均数 .

(二)能力训练点培养学生的观察能力、计算能力 .

(三)德育渗透点

1.培养学生认真、耐心、细致的学习态度和学习习惯 .

2.渗透数学来源于实践,反地来又作用于实践的观点 .

(四)美育渗透点

通过本课的学习,渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显,寓纷繁于严谨的辩证统一的数学美 .

重点·难点·疑点及解决办法

1.教学重点:平均数的概念及其计算 .

2.教学难点:平均数的简化计算 .

3.教学疑点:平均数简化公式的应用,a如何选择 .

4.解决办法:分清两个公式,公式②的运用要选择一个适当的a .

教学步骤

(一)明确目标

在日常生活中,我们常与数据打交道,例如,电视台每天晚上都要预报第二天当地的最低气温与气温,商店每天都要结算一下当天的营业额,每个班次的飞机都要统计一下乘客的人数等.这些都涉及数据的计算问题.请同学们思考下面问题.(教师出示幻灯片)

为了从甲乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验.两人在相同条件下各射靶10次,命中的环数如下:

甲78686591074乙9578768677

怎样比较两个人的成绩?2.应选哪一个人参加射击比赛?教师要引导学生观察,给学生充分的时间去思考,并可以分成小组讨论解决办法.

对于这个问题,部分学生可能感到无从下手,部分学生可能想到去比较两组数据的平均,让学生动手具体算一下两组数据的平均数结果它们相等在学生无法解决此问题的情况下,教师说明,这正是本章要解决的问题之一(写出课题).这样做的目的是教师有意创设问题情境、制造悬念,这不仅能激发学生学习的积极性和自觉性,引起学生对所学课程的注意,还能诱发学生探求新知识的浓厚兴趣.

(二)整体感知

解决类似上述的问题要用到统计学的知识,统计学是一门研究如何收集、整理、分析数据并据之做出推断的科学,它以概率论为基础,着重研究如何根据样本的性质去推测总体的性质.在当今的信息时代,统计学的应用非常广泛,以至于它已渗透到整个社会生活的各个方面.本章我们将学习统计学的一些初步知识.

(三)教学过程

这节课我们首先来学习平均数.

(出示幻灯片)请同学看下面问题:

某班第一小组一次数学测验的成绩如下:

869110072938990 857595

这个小组的平均成绩是多少?

教师引导学生动笔计算,并找一名学生到黑板板演,讲完引例后,引导学生归纳出求平均数方法,这样做使学生对平均数的计算公式能有深刻的认识 .

2.平均数的概念及计算公式

一般地,如果有n个数x1、x2、x3、x4…xn ,那么x=( x1+x2+x3+x4+…+xn)/n① 叫做这n个数的平均数, 读作“x拨” .

这是在初中数学课本中第一次出现带有省略号的用字母表示的n个数相加的一般写法 .学生对此可能会感到比较抽象,不太习惯,要向学生强调,采用这种写法是简化表示,是为了使问题的讨论具有一般性 .教师应通过对公式的剖析,使学生正确理解公式,并掌握公式中各元素的意义 .

3.平均数计算公式①的应用例1 一个地区某年1月上旬各天的最低气温依次是(单位:℃):

-6,-5,-7,-6,-4,-5,-7,-8,-7求它们的平均气温 .

让学生动手计算,以巩固平均数计算公式(一名学生板演)

教师应强调:①解题格式 .②在统计学里处理的数据包括负数 .③在本章中,如无特殊说明,平均数计算结果保留的位数与原数据相同 .

例2 从一批机器零件毛坯中取出20件,称得它们的质量如下(单位:千克):

210208200205202418206214215207195207218192202416185227187215

计算它们的平均质量 .(用投影仪打出)

引导学生两人一组完成计算,然后一起对答案 .由于数据较大,计算较繁,可能会出现不同的答案 .正好为下面提出简化计算公式作好铺垫 .

教师提出问题:像例2这样,数据较大,计算较繁,因而容易出错,有没有较为简便的算法呢?引导学生观察数据有什么特点?都接近于哪一个数?启发学生讨论,寻找简便算法 .

学生回答:数据都在200左右波动,可将各数据同时减去200,转而计算一组数值较小的新数据的平均数,至此让学生再一次两人一组用简便方法计算例2,并与前面计算的结果相比较是否一样 .

讲完例2后,教师指出几点:常数a的取法不是惟一的; 读作“x——撇——拨”;;简化计算的结果与前面毛算的结果相同 .

通过学生的动手计算,若产生困难或错误,教师及时点拨,引导学生寻找解决问题的方法,这不仅可以激发学生学习的兴趣,更培养了学生的发散思维能力,同时也使学生对公式②的推导更容易接受 .

3.推导公式②

一般地,当一组数据 的各个数值较大时,可将各数据同时减去一个适当的常数a,得到x1▎=x1-a, x2▎=x2-a, x3▎=x3-a, ┅xn▎=xn-a,那么x▎=x-a ②

为了加深学生对公式②的认识,再让学生指出例2的平均质量各是什么?(学生回答)

课堂练习:

教材p148中~p149中1,2,3

(四)总结、扩展

知识小结:1.统计学是一门与数据打交道的学问,应用十分广泛 .本章将要学习的是统计学的初步知识 .

2.求n个数据的平均数的公式① .

3.平均数的简化计算公式② .这个公式很重要,要学会运用 .

方法小结:通过本节课我们学到了示一组数据平均数的方法 .当数据比较小时,可用公式①直接计算 .当数据比较大,而且都在某一个数左右波动时,可选用公式②进行计算 .

布置作业教材p153中1、2、3、4 .

初三数学课教案篇4

1、教材分析

(1)知识结构

(2)重点、难点分析

重点:三角形内切圆的概念及内心的性质.因为它是三角形的重要概念之一.

难点:①难点是“接”与“切”的含义,学生容易混淆;②画三角形内切圆,学生不易画好.

2、教学建议

本节内容需要一个课时.

(1)在教学中,组织学生自己画图、类比、分析、深刻理解三角形内切圆的概念及内心的性质;

(2)在教学中,类比“三角形外接圆的画图、概念、性质”,开展活动式教学.

教学目标 :

1、使学生了解尺规作的方法,理解三角形和多边形的内切圆、圆的外切三角形和圆的外切多边形、三角形内心的概念;

2、应用类比的数学思想方法研究内切圆,逐步培养学生的研究问题能力;

3、激发学生动手、动脑主动参与课堂教学活动.

教学重点:

三角形内切圆的作法和三角形的内心与性质.

教学难点 :

三角形内切圆的作法和三角形的内心与性质.

教学活动设计

(一)提出问题

1、提出问题:如图,你能否在△abc中画出一个圆?画出一个的圆?想一想,怎样画?

2、分析、研究问题:

让学生动脑筋、想办法,使学生认识作三角形内切圆的实际意义.

3、解决问题:

例1 作圆,使它和已知三角形的各边都相切.

引导学生结合图,写出已知、求作,然后师生共同分析,寻找作法.

提出以下几个问题进行讨论:

①作圆的关键是什么?

②假设⊙i是所求作的圆,⊙i和三角形三边都相切,圆心i应满足什么条件?

③这样的点i应在什么位置?

④圆心i确定后半径如何找.

a层学生自己用直尺圆规准确作图,并叙述作法;b层学生在老师指导下完成.

完成这个题目后,启发学生得出如下结论: 和三角形的各边都相切的圆可以作一个且只可以作出一个.

(二)类比联想,学习新知识.

1、概念:和三角形各边都相切的圆叫做,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.

2、类比:

名称

确定方法

图形

性质

外心(三角形外接圆的圆心)

三角形三边中垂线的交点

(1)oa=ob=oc;

(2)外心不一定在三角形的内部.

内心(三角形内切圆的圆心)

三角形三条角平分线的交点

(1)到三边的距离相等;

(2)oa、ob、oc分别平分∠bac、∠abc、∠acb;

(3)内心在三角形内部.

3、概念推广:和多边形各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.

4、概念理解:

引导学生理解及圆的外切三角形的概念,并与三角形的外接圆与圆的内接三角形概念相比较,以加深对这四个概念的理解.使学生弄清“内”与“外”、“接”与“切”的含义.“接”与“切”是说明三角形的顶点和边与圆的关系:三角形的顶点都在圆上,叫做“接”;三角形的边都与圆相切叫做“切”.

(三)应用与反思

例2 如图,在△abc中,∠abc=50°,∠acb=75°,点o是三角形的内心.

求∠boc的度数

分析:要求∠boc的度数,只要求出∠obc和∠0cb的度数之和就可,即求∠l十∠3的度数.因为o是△abc的内心,所以ob和oc分别为∠abc和∠bca的平分线,于是有∠1十∠3= (∠abc十∠acb),再由三角形的内角和定理易求出∠boc的度数.

解:(引导学生分析,写出解题过程)

例3 如图,△abc中,e是内心,∠a的平分线和△abc的外接圆相交于点d

求证:de=db

分析:从条件想,e是内心,则e在∠a的平分线上,同时也在∠abc的平分线上,考虑连结be,得出∠3=∠4.

从结论想,要证de=db,只要证明bde为等腰三角形,同样考虑到连结be.于是得到下述法.

证明:连结be.

e是△abc的内心

又∵∠1=∠2

∠1=∠2

∴∠1+∠3=∠4+∠5

∴∠bed=∠ebd

∴de=db

练习分析作出已知的锐角三角形、直角三角形、钝角,并说明三角形的内心是否都在三角形内.

(四)小结

初三数学课教案篇5

教学目标

1、会运用因式分解进行简单的多项式除法。

2、会运用因式分解解简单的方程。

二、教学重点与难点教学重点:

教学重点

因式分解在多项式除法和解方程两方面的应用。

教学难点:

应用因式分解解方程涉及较多的推理过程。

三、教学过程

(一)引入新课

1、知识回顾(1)因式分解的几种方法:

①提取公因式法:ma+mb=m(a+b)

②应用平方差公式:=(a+b)(a—b)

③应用完全平方公式:a 2ab+b =(ab)

(2)课前热身:①分解因式:(x +4)y — 16x y

(二)师生互动,讲授新课

1、运用因式分解进行多项式除法例

1计算:(1)(2ab —8a b)(4a—b)

(2)(4x —9)(3—2x)

解:(1)(2ab —8a b)(4a—b)=—2ab(4a—b)(4a—b)=—2ab(2)(4x —9)(3—2x)=(2x+3)(2x—3)[—(2x—3)] =—(2x+3)=—2x—3

一个小问题:这里的x能等于3/2吗?为什么?

想一想:那么(4x —9)(3—2x)呢?练习:课本p162课内练习

合作学习

想一想:如果已知()()=0,那么这两个括号内应填入怎样的数或代数式子才能够满足条件呢?(让学生自己思考、相互之间讨论!)事实上,若ab=0,则有下面的结论:(1)a和b同时都为零,即a=0,且b=0(2)a和b中有一个为零,即a=0,或b=0

试一试:你能运用上面的结论解方程(2x+1)(3x—2)=0吗?

3、运用因式分解解简单的'方程例

2、解下列方程:(1)2x +x=0(2)(2x—1)=(x+2)解:x(x+1)=0解:(2x—1)—(x+2)=0则x=0,或2x+1=0(3x+1)(x—3)=0原方程的根是x1=0,x2=则3x+1=0,或x—3=0原方程的根是x1=,x2=3注:只含有一个未知数的方程的解也叫做根,当方程的根多于一个时,常用带足标的字母表示,比如:x1,x2

做一做!对于方程:x+2=(x+2),你是如何解该方程的,方程左右两边能同时除以(x+2)吗?为什么?

教师总结:运用因式分解解方程的基本步骤(1)如果方程的右边是零,那么把左边分解因式,转化为解若干个一元一次方程;(2)如果方程的两边都不是零,那么应该先移项,把方程的右边化为零以后再进行解方程;遇到方程两边有公因式,同样需要先进行移项使右边化为零,切忌两边同时除以公因式!

4、知识延伸解方程:(x+4)—16x =0解:将原方程左边分解因式,得(x +4)—(4x)=0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0(x+2)(x—2)=0接着继续解方程,5、练一练①已知a、b、c为三角形的三边,试判断a—2ab+b —c大于零?小于零?等于零?解:a —2ab+b —c =(a—b)—c =(a—b+c)(a—b—c)∵ a、b、c为三角形的三边a+c﹥b a﹤b+c a—b+c﹥0 a—b—c﹤0即:(a—b+c)(a—b—c)﹤0,因此a —2ab+b —c小于零。

6、挑战极限①已知:x=20xx,求∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6的值。解:∵4x — 4x+3=(4x —4x+1)+2 =(2x—1)+2 0x +2x+2 =(x +2x+1)+1 =(x+1)+10 ∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6= 4x — 4x+3 —4(x +2x+2)+13x+6= 4x — 4x+3 —4x —8x —8+13x+6= x+1即:原式= x+1=20xx+1=20xx

(三)梳理知识,总结收获因式分解的两种应用:

(1)运用因式分解进行多项式除法

(2)运用因式分解解简单的方程

(四)布置课后作业

作业本6、42、课本p163作业题(选做)

初三数学课教案篇6

重点、难点根据公式的特征及问题的特征选择适当的公式计算.

教学过程

一、议一议

1.边长为(a+b)的正方形面积是多少?

2.边长分别为a、b拍的两个正方形面积和是多少?

3.你能比较(1)(2)的结果吗?说明你的理由.师生共同讨论:学生回答(1)(a+b) (2)a +b (3)因为(a+b) = a +2ab+b ,所以 (a+b) -(a +b )=a +2ab+b -a -b =2ab,即(1)中的正方形面积比(2)中的正方形面积大.

二、做一做

例1. 利用完全平方式计算1. 102 。

2. 197 师:要利用完全平方公式计算,则要创设符合公式特征的两数和或两数差的.平方,且计算尽可能简便.学生活动:在练习本上演示此题.让学生叙述

教师板书.解:1.102 =(100+2) 2.197 =(200-3) =100 +2 loo 2+2, =200 -2 2o0 3十3 ,=10000+400+4 =40000-1200+9 =10404 =38809 例2.计算:1.(x-3) -x

2.(2a+b- )(2a-b+ )师生共同分析:1中(x-3) 可利用完全平方公式.学生动笔解答第1题.教师根据学生解答情况,板书如下:解:1. (x-3) -x = x +6x+9-x =6x+9师问:此题还有其他方法解吗?引导学生逆用平方差公式,从而培养学生创新精神.学生活动:分小组讨论第(2)题的解法.此题学生解答,难度较大.教师要引导学生使用加法结合律,为使用公式创造条件.学生小组交流派代表进行全班交流.最后教师板书解题过程.解:2. (2a+b- )(2a-b+ )=[2a+(b- )][2a-(b- )]=(2a) -(b- ) =4a -(b-3b+ )=4a -b +3b-

三、试一试

计算:

1. (a+b+c)

2. (a+b) 师生共同分析:对于1要把多项式完全平方转化为二项式的完全平方,要使用加法结合律,为使用完全平方公式创造条件.如(a+b+c) =[a+(b+c)] 对于(2)可化为(a+b) =(a+b)(a+b) .学生动笔:在练习本上解答,并与同伴交流你的做法.学生叙述。

教师板书.解:1. (a+b+c) =[a+(b+c)] =(a+b) +2(a+b)c+ c = a +2ab+b +2ac+2bc+c = a +b +c +2ab+2ac+2bc

四、随堂练习

p38 1

五、小结

本节课进一步学习了完全平方公式,在应用此公式运算时注意以下几点. 1.使用完全平方公式首先要熟记公式和公式的特征,不能出现(ab) = a b 的错误,或(ab) = a ab+b (漏掉2倍)等错误.2.要能根据公式的特征及题目的特征灵活选择适当的公式计算.3.用加法结合律,可为使用公式创造了条件.利用了这种方法,可以把多项式的完全平方转化为二项式的完全平方.

六、作业

课本习题1.14 p38 1、2、3.

七、教后反思

1.9 整式的除法第一课时 单项式除以单项式教学目标1.经历探索单项式除法的法则过程,了解单项式除法的意义.

2.理解单项式除法法则,会进行单项式除以单项式运算.重点、难点重点:单项式除以单项式的运算.难点:单项式除以单项式法则的理解.

最新范文

初三数学课教案6篇09-09

300到500字的演讲稿优质6篇09-09

关于“我的梦想”的演讲稿6篇09-09

社开展猜灯谜活动方案精选8篇09-09

社开展猜灯谜活动方案6篇09-09

校园消防演练活动方案6篇09-09