本文是网站小编coco给大家分享关于直线的位置关系教学反思5篇的范文,文章可能有点长,但是希望大家可以阅读完,增长自己的知识,最重要的是希望对各位有所帮助,可以解决了您的问题,不要忘了收藏本站喔。
一份详细的教学反思是需要结合实际的教学过程的,教学反思是老师对教学活动分析的一种文字报告,以下是尚华范文网小编精心为您推荐的直线的位置关系教学反思5篇,供大家参考。
直线的位置关系教学反思篇1
?直线与圆的位置关系》是人教版九年级(下)第三章第一节的内容,它和点与圆的位置关系、圆与圆的位置关系同是研究图形之间位置关系的重要内容。下面谈谈自己的做法和体会:
一、重视定义的形成和概括过程:
“直线与圆的位置关系”是由公共点的个数来定义的。定义的教学是在教师引导下,通过学生观察、思考、交流、概括等探究活动亲身经历概念的形成过程,形成新知识的建构。首先引导学生回忆点和圆的位置关系及判定方法,通过对已有研究方法的揭示,增强学生运用迁移方法研究新问题的意识。接着,借助多媒体引导学生观察并思考:在不同的位置关系下,直线和圆的公共点的个数有什么不同?从而引导学生揭示出直线与圆的位置关系与公共点的个数之间存在着对应关系的本质特征。到此,我并没有急于给出定义,而是进一步引导学生在定义的形成上下功夫,又提出两个问题:一是直线与圆有三个或三个以上公共点吗?二是通过刚才的研究,你认为直线和圆的位置关系可分为几种类型呢?分类的标准是什么?定义的教学不只是以直接感知教材为出发点,而是力图还原定义的形成过程,这样既加深了学生对定义本身的理解,又提高学生对定义形成过程中所涉及的思想、方法的认识。而多媒体课件在这里的作用主要是通过“直线动圆不动”“圆动直线不动”“圆心直线不动半径变”三种运动方式的演示,有效创设符合教学内容的情景,把知识的形成过程直观化,提高学生的兴趣,增强学生的参与性。
二、重视定理的发现和总结过程:
本课内容的第二个知识点是运用圆心到直线的距离与半径的大小关系来判定直线与圆的`位置关系,并反过来得到直线与圆的位置关系下所具有的数量特征。难点是如何引导学生去发现隐含在图形中的这两个数量并加以比较,为此,我设计了一个问题串,以问题为导向,以探究问题的方式引导学生自学自悟,为学生提供了自主合作探究的舞台,闪现了学生思维创新的火花。
引导1:通过刚才的研究我们知道,利用公共点的个数可以判定直线与圆的位置关系,请同学想一想,能否像判定点与圆的位置关系那样,通过数量关系来判定直线与圆的位置关系?
引导2:点与圆的位置关系的判定运用了哪两个数量之间的关系?直线与圆的位置关系中可以出现哪两个量呢?
引导3:如何用图形来反映半径和圆心到直线的距离这两个量呢?
引导4:如何由数量关系并结合图形判定相应的位置关系呢?
引导5:运用数量关系判定直线与圆的位置关系以及点与圆的位置关系,这两者之间有何区别与联系?
引导6:以上三个判定反过来成立吗?
通过以上问题,学生不仅加深了对判定直线与圆的位置关系的方法的理解,更重要的是使学生学会运用联想、化归、数形结合等思想方法去研究问题,这无疑促进学生在学会数学的过程中顺利地向“会学”的方向发展。而多媒体课件在这里的作用在于把“形”和“数” 的关系及其变化动态呈现在屏幕上,成为学生探索验证的好帮手。
三、尊重学生的主体地位:
教学设计应为学生自主学习,实现知识的建构服务。这节课为学生提供了大量问题情境、活动方式,使学生通过“做一做”“想一想”“练一练”“议一议”充分地实践与探索,不断地归纳与总结,引导学生发现规律、拓展思路。而多媒体的介入,为学生实现“意义建构”创设了更为逼真的“情景”,改善了认知环境,有利于提高课堂效率,有利于学生思维和技能的训练。如“议一议”:(1)已知⊙o半径为4cm,直线l上的点a满足oa=4cm,能否判定直线l和⊙o相切?为什么?
(2)已知⊙o半径为4cm,直线l上的点a满足oa=5cm,能否判定直线l和⊙o相离?为什么?
此题重在强调判定方法中圆心到直线的距离,利用多媒体演示,更直观地说明:(1)中当oa不是圆心到直线的距离时,直线l和⊙o相交;当oa是圆心到直线距离时,直线l是⊙o相切。(2)方法同(1),通过此题练习提高了学生思维的深刻性和批判性。
四、重视规律的揭示和提炼过程:
某个数学知识的教学可以在短期内完成,数学技能也可通过强化训练形成,而掌握学习的规律是一个长期渐进的过程,我认为教师在教学过程中应增强揭示规律的意识,引导学生从学习、研究的过程加以提炼,通过日积月累产生认识的飞跃。因此,在回顾与反思中,我组织学生以小组交流的形式讨论以下问题:一是通过刚才的学习,你对如何研究图形之间的位置关系有什么收获和体会?二是“点与圆的位置关系”与“直线与圆的位置关系” 有哪些联系?通过比较你有何启发?这一设计的做法虽小,作用却大,它使学生的认识上升到一个新的高度。也确保了学生在学会数学的过程中顺利地向“会学”的方向发展。
五、拓宽学习的时间和空间:
课后作业的设计不仅要达到巩固知识的目的,更重要的是有研究性和探索性。本节的课后作业有一道探究价值的题目:在rt△abc 中,∠c=rt∠,ac=8cm,bc=6cm,若要以c为圆心,r为半径画圆,请根据下列条件,求半径r的值或取值范围。 1、ab与圆相离 2、ab与圆相交 3、ab与圆相切。
学生需通过动手动脑来完成,使学生的探索精神由课内延伸到课外。多媒体课件的作用在于通过圆的半径的动态变化,为学生研究直线与圆的位置关系提供思路和分类方法。
总之,通过这节课的教学,力图达到以下三个目标:一是知识目标,就是使学生理解概念,掌握性质和判定并能够利用它们分析问题和解决问题;二是能力目标,培养学生运用迁移、联想、类比、化归、数形结合等数学思想方法发现问题解决问题的能力和创新能力;三是情感目标,通过学生的主动参与,在学会数学的过程中向“会学”的方向发展,培养运动、变化、发展的辨证唯物主义观点。
直线的位置关系教学反思篇2
这是我第一次进入初三进行教学,即紧张又兴奋。经过一个学期的历练,在校领导和组内老教师的无私帮助下我有了一些进步。现以《直线和圆的位置关系》第一课时为例,反思如下。
在初三的教学过程中,我几乎是听一节上一节。而集体备课也给了我很大的帮助。通过集体备课和听课,在《直线和圆的位置关系》这节课中,我首先引导学生回忆了点与圆的位置关系及所对应的点到圆心的距离与圆半径的数量关系。从而引出课题:直线和圆的位置关系。然后由学生平移直尺,自主探索发现直线和圆的三种位置关系,给出定义,联系实际,由学生发现日常生活中存在的直线和圆相交、相切、相离的现象,紧接着引导学生探索三种位置关系下圆心到直线的距离与圆半径的大小关系,由“做一做”进行应用,最后去解决实际问题。通过本节课的教学,我认为成功之处有以下几点:
1、在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。
2、新课标下的数学强调人人学有价值的数学,人人学有用的数学,为此,在做一做之后我安排了两道实际问题:“经过两村庄的笔直公路会不会穿越一个圆形的森林公园?”“公路边的学校会不会受到噪声的影响?”培养学生解决实际问题的能力。由于这两题要学生回到生活中去运用数学,学生的积极性高涨,都急着讨论解决方案,是乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。
同时,我也感觉到本节课的设计有不妥之处,主要有以下三点:
1.学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。讲得过多,学生被动的接受,思考得不够,对概念的理解不是很深刻。可以改为让学生类比点与圆的位置关系下定义,师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。
2、虽然我在设计本节课时是体现让学生自主操作探究的原则,但在让学生探索直线和圆三种位置关系所对应的数量关系时,没有给予学生足够的探索、交流的时间,限制了学生的思维。此处应充分发挥小组的特点,让学生相互启发讨论,形成思维互补,集思广益,从而使概念更清楚,结论更准确。
3.对“做一做”的处理不够,这一环节是对探究的成绩与效果的探索与检验,重在帮助学生掌握方法,我在讲解“做一做”时,没有充分展示解题思路,没有及时进行方法上的总结,致使部分学生在解决实际问题时思路不明确。并在进行下面的解题时体现出来。教师要根据情况,简要归纳、概括应掌握的方法,使学生能够举一反三,不能想当然,否则会影响学生对知识的消化吸收。
总之,在今后的数学教学中还有很多需要我学习和掌握的东西,希望能和学生们一起共同进步,真正成为一名合格的数学教师。
直线的位置关系教学反思篇3
本节内容是直线与圆的位置关系的第二节课。需要一个课时。
(1)在教学中,组织学生自主观察、猜想、证明并深刻剖析直线是圆的切线的判定条件和直线与圆相切的性质;对重要的结论及时总结。
(2)在教学中,以“观察——猜想——证明——剖析——应用——归纳”为主线,开展在教师组织下,以学生为主体,活动式教学。
今 后再教学本节课,应删去未能落实的教学设计,如繁杂的证明,多重视展示后进生的思维活动,有效地帮助他们形成良好的思维品质。另外,应加强对学生新建的知 识结构进行有效的跟踪、检测、调查与反馈,加强与学生交流,帮助他们扎实构建完整的知识体系,帮助他们养成观察、猜想、分析、探索、语言表达等思维习惯, 使学生在获得知识的同时,进一步培养相关的思维能力和素质。
新课程理念及新基础教育理念都提倡“把课堂还给学生,让课堂充满生命活力”, 让学生真正“动起来”,动不应当是表面的、外在的,而应当使学生的思维处于活跃状态,积极思考问题,这种内在的、深层的动,更要落实,动静结合,收放适 度,动得有序,动而不乱。课堂教学要的不是热闹场面,而是对问题的深入研究和思考。首先要设计好问题,针对不同意见和问题引导学生展开讨论、辩论,抓住学 生发言中的问题,及时给以矫正。当教师提出问题让学生探索时,学生自己寻找答案时,要放手让学生活动,但要避免学生兴奋过度或活动过量。今后再教学本节课 仍应倡导提高学生的问题意识,以对问题的探究来构筑本节课教学的主题。但是,教师待学生的问题提完后,与学生一道对问题进行归类,找出学生思维和知识的核 心问题,以此组织课堂教学,并相机解决其他问题。仍应放权给学生,给他们想、做、说的机会,让他们讨论、质疑、交流,围绕某一个问题展开辩论。教师应当给 学生时间和权利,让学生充分进行思考,给学生充分表达自己思维的机会。但是,应关注学生的参与程度,有的学生的参与只是一种表面上的行为参与。要看学生的 思维是否活跃,关键是学生所回答的问题、提出的问题,是否建立在一定的思维层次上,是否会引起其他学生的积极思考,还是学生的自我需要。也就是说我们要关 注学生思维的状态与学习互动的状态。
直线的位置关系教学反思篇4
根据新课程标准注重信息技术与数学课程整合,高中数学课程应提倡利用信息技术来呈现以往教学中难以呈现的课程内容,在保证笔算训练的前提下,尽可能的使用科学型计算器、各种数学教育技术平台,加强数学教学与信息技术的结合,鼓励学生运用计算机、计算器等进行探索和发现。”本节课力图在这一方面有所尝试。为此,将大量的信息做在课件上,通过演示的方式让学生学习。通过这种方式增加了课堂容量,节省了时间,使学生有更多的时间来思考和练习,同时通过课件演示,将复杂抽象的空间
几何问题用直观形象的图片和动画显示,使学生更容易理解问题的本质,达到了很好的教学效果。
在学生实验发现探索阶段,通过电脑演示学生可能的各种解答方案、通过电脑动画,使学生将一个复杂抽象的空间几何问题转化为一个简单有趣的活动,通过活动调动学生的积极性去发现问题的本质,去理解本节课“空间问题平面化”的思想精髓。
在练习中用几何画板来分析各种解法,既快捷又准确,通过变化直线的颜色可以起到区别和强调的作用,同时也将正确答案显示在屏幕上,便于学生检查和矫正。在课堂小节上通过超链接和回放,使学生对本节课有一个整体的认识,让学生的思路清晰明了。
也许有些老师会把一节课的教学着重点放在如何把知识点讲明白上,但是新课标指出:学生的数学学习活动不应只限于接受、记忆、模仿和练习,还应倡导自主探索、动手实践、合作交流、阅读自学等学习数学的方式。教师是情境的创造者,过程的的引导者和启发者,学生是学习的主体,是知识的探究者和发现者。所以这节课我把大部分着重点放在如何引导学生探究知识、理解概念上,以学生的合作交流,自主探究为主线,让学生体会数学知识的形成和应用过程,使整节课是个学生动手参与,动脑思考的过程,使学生的思维得到拓展和深化,使课堂学习达到最佳状态。
本节课的教学目标是:理解异面直线的概念;会判断两条直线是否为异面直线;理解异面直线所成角的概念;会求简单的异面直线所成角的大小。通过本节课的教学,使学生感知数学,体验数学;培养学生的空间想象能力和化归转化能力;了解科学学习方法和研究方法,增强创新意识和实践能力,训练学生独立分析问题解决问题的能力。
我在使用信息技术上还是很不成熟的,这既与客观条件有关系,也与我自己的认识和能力有关系,以后还有很多需要提高的地方。当然,在利用信息技术的同时,双基的训练不能忽略,还应当进一步加强,数学教学的本质是培养和锻炼学生的逻辑思维能力,我们不能为了用课件而用课件,在这节课我深有体会,比如课堂上我发现有部分学生忙于记笔记,而跟不上上课的思路,导致引导起来比较费力一些。应该根据不同的学生和课堂情形,灵活处理,要充分发挥学生的主体地位,真正从学生的发展这个角度来灵活实现信息技术与数学教学的有机整合。
直线的位置关系教学反思篇5
新课程指出:学生是学习的主体,是发展的主体。在课堂教学中,教师要将课堂的主动权让给学生,作为教师应以“探究过程,探究方法,探究结果,运用结果”为主线安排教学进程,应高度重视学生的主动参与、亲自研究、动手操作,让学生从中去体验学习知识的过程,引导学生在发现问题、分析问题、解决问题的同时,培养学生的自主学习能力和创新意识。
在《直线和圆的位置关系》这节课中,我首先由生活中的情景——日落引入,让学生发现地平线和太阳位置关系的变化,从而引出课题:直线和圆的位置关系。然后由学生平移直尺,自主探索发现直线和圆的三种位置关系,给出定义,联系实际,由学生发现日常生活中存在的直线和圆相交、相切、相离的现象,紧接着引导学生探索三种位置关系下圆心到直线的距离与圆半径的大小关系,由“做一做”进行应用,最后去解决实际问题。
通过本节课的教学,我认为成功之处有以下几点:
1.由日落的三张照片(太阳与地平线相离、相切、相交)引入,学生比较感兴趣,充分感受生活中反映直线与圆位置关系的现象,体验到数学来源于实践。对生活中的数学问题发生好奇,这是学生最容易接受的学习数学的好方法。新课标下的数学教学的基本特点之一就是密切关注数学与现实生活的联系,从生活中“找”数学,“想”数学,让学生真正感受到生活之中处处有数学。
2.在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的.相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。
3.新课标下的数学强调人人学有价值的数学,人人学有用的数学,为此,在做一做之后我安排了一道实际问题:“经过两村庄的笔直公路会不会穿越一个圆形的森林公园?”培养学生解决实际问题的能力。由于此题要学生回到生活中去运用数学,学生的积极性高涨,都急着讨论解决方案,是乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。
同时,我也感觉到本节课的设计有不妥之处,主要有以下三点:
1.学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。学生被动的接受,对概念的理解不是很深刻,可以改为让学生下定义,师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。
2.虽然我在设计本节课时是体现让学生自主操作探究的原则,但在让学生探索直线和圆三种位置关系所对应的数量关系时,没有给予学生足够的探索、交流的时间,限制了学生的思维。此处应充分发挥小组的特点,让学生相互启发讨论,形成思维互补,集思广益,从而使概念更清楚,结论更准确。
3.对“做一做”的处理不够,这一环节是对探究的成绩与效果的探索与检验,重在帮助学生掌握方法,我在讲解“做一做”时,没有充分展示解题思路,没有及时进行方法上的总结,致使部分学生在解决实际问题时思路不明确。教师要根据情况,简要归纳、概括应掌握的方法,使学生能够举一反三,巩固和扩大知识,吸收、内化知识。
总之,新课程的课堂教学要让学生作为课堂教学的主体参与到课堂教学过程中来,充分展现自己的个性,施展自己的才华,使学生在参与和体验的过程中真正成为学习的主人,养成勇于探索、敢于实践的个性品质。与此同时,教师还要为学生的学习创造探究的环境,营造探究的氛围,促进探究的开展,把握探究的深度,评价探究的效果。
最新范文
直线的位置关系教学反思5篇10-20
酒店年终工作总结个人总结范文5篇10-20
高校老师年终总结【优秀14篇】10-20
电气施工员工作总结10-19
主管工作总结10-19
最新物业工作总结10-19